Short and long-run effects of devaluations. Evidence from Argentina (1854-2017)

Luciano Campos (CUNEF) Martín Rapetti (UBA)

RIDGE, December 18th

Insights

- What is the impact of devaluations over aggregate activity in developing countries?
- Short-run: expansionary or contractionary?
- Long-run: growth effects or not?
- Do we observe different effects among devaluation episodes?
- Why are there heterogeneous effects?

What do we do?

- Assess the effects of devaluations over the real exchange rate, the current account and output growth.
- Bayesian VAR where structural shocks are identified based on theory using dynamic sign and exclusion restrictions.
- Although the scope of our work is more general, our case study is Argentina:
- More than 160 years of data availability and over 25 devaluation episodes.
- We do a historical analysis of devaluation episodes in light of our estimates.

Our contribution

Two strands of literature:

- 1. Short-run effects of devaluations: are devaluations expansionary or contractionary?
- 2. Long-run effects: the real exchange rate-growth channel.
- We design an empirical model to capture both short and long-run effects of devaluations.
- In addition, we contribute to the economic history of Argentina by looking at each devaluation episode along time.
- Why did some devaluations have different effects than others?
- Is there any pattern we can come up with?

- 1. Devaluations were mostly of the contractionary type.
- 2. *Expansionary* devaluations, as predicted in the traditional theory, cannot be recovered from the DGP.
- 3. Long-run real effects when inflation was low.
- 4. Long-run nominal effects when inflation was high.

Literature

Short-run effects:

- Traditional approach, devaluations are *expansionary*: Laursen & Metzler (1950), Harberger (1950), Alexander (1959), Johnson (1976) and Gylfason & Schmid (1983).
- Puzzling observation in developing countries: devaluations were contractionary. Díaz-Alejandro (1963), Sidrauski (1968), Krugman & Taylor (1978) and Edwards (1986).
- VAR evidence in developing countries is mixed. VAR evidence

Long-run effects:

 Real exchange rate-growth channel. Hausmann et al. (2005), Rodrik (2008), Eichengreen (2008), Frenkel & Rapetti (2008), Razmi et al. (2012), Levy-Yeyati et al. (2012) Habib et al. (2016) and Guzman et al. (2017).

Literature (cont)

Argentinean economic history:

- General: Díaz-Alejandro (1970), Gallo & Cortés-Conde (1972), Rapaport (2000), della Paolera & Taylor (2003), Ferrer (2004) and Gerchunoff & Llach (2018).
- Growth-relative divergence focus: Di-Tella et al. (1967), Taylor (1992), Sanz (2009), Gerchunoff & Llach (2009), Buera et al. (2011), González & Viego (2011), Heymann & Ramos (2012) and Brambilla et al. (2018).
- Monetary and fiscal focus: Dornbusch & de Pablo (1990), Fanelli & Frenkel (1990) and Buera & Nicolini (2018).
- Exchange rate focus: Ferrer (1963), Díaz-Alejandro (1965) and Frenkel & Rapetti (2012).

Short-run effects of devaluations

Model economy based on Díaz-Alejandro (1963):

- Two products: tradables and non-tradables.
- Two sectors: capitalists and workers.

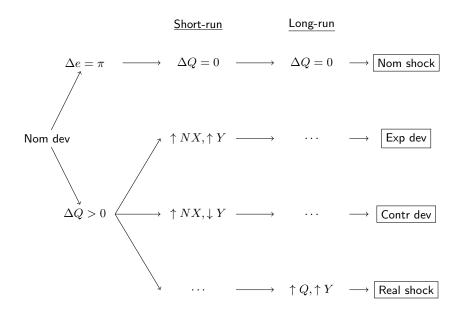
Effect over output:

$$dY = (dY^T + dY^{NT})de$$

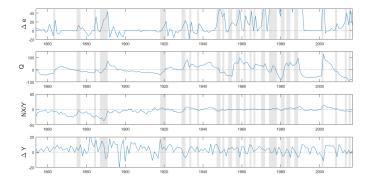
Key assumption: inelastic supply of tradables (farming takes time), but elastic for non-tradables (unemployment). Then:

$$dY = dY^{NT} = [\underbrace{m_{nc}(Y_s^T - Y_{dc}^T)}_{i} - \underbrace{m_{nw}(Y_{dw}^T)}_{ii} + \underbrace{Y^{NT}E_{ne}}_{iii}]de$$

- i) Income effect for capitalists.
- ii) Income effect for workers.
- *iii*) Substitution effect from tradables to non-tradables (expenditure switching effect).
- ▶ It makes sense to assume that |ii| > |i|. Then, if iii is low, devaluations are contractionary.
- The trade balance increases due to a strong drop in imports. Trade Balance


Long-run effects of devaluations

► Traditional view (PPP):


$$\Delta Q = \Delta e - \pi + \pi^*$$

- Alternative approach (Rodrik (2008)):
- In developing countries, devaluations that keep the real exchange high for a long period might foster growth and development.
- This happens because, in this countries, there are market failures that prevents the most efficient resource allocation.
- So, an undervaluation in the real exchange rate is as a second best.

Short and long-run effects of devaluations

Data

- Anual data from 1854 until 2017.
- > 27 devaluation episodes.

Structural VAR

1. Structural VAR(p) representation:

$$B_0y_t = B_1y_{t-1} + B_2y_{t-2} + \dots + B_py_{t-p} + w_t \qquad w_t \sim (0, I_K)$$

where $y_t = (\Delta e_t, Q_t, NX_t/Y_t, \Delta Y_t)'.$
2. Reduced form VAR(p):

 $y_t = A_1 y_{t-1} + A_2 y_{t-2} + \ldots + A_p y_{t-p} + u_t$ $u_t \sim (0, \Sigma_u)$ where $A_i = B_0^{-1} B_i, i = 1, \ldots, p$ and $u_t = B_0^{-1} w_t$.

Estimation

3. Bayesian estimation using Gibbs sampler:

$$g(\theta \mid y) = l(\theta \mid y)g(\theta)$$

where $g(\theta \mid y)$ is the posterior, $l(\theta \mid y)$ is the likelihood function, $g(\theta)$ is the prior and $\theta = (\alpha, \Sigma_u)$ are the parameters' estimates (α are the VAR coefficients).

4. Assume independence of priors α and Σ_u (independent Gaussian-Inverse Wishart Prior):

$$g(\alpha, \Sigma_u) = g_\alpha(\alpha)g_{\Sigma_u}(\Sigma_u)$$

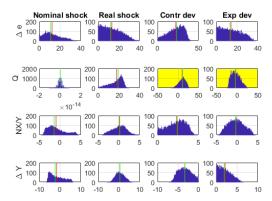
where

$$\alpha \sim \mathcal{N}(\alpha^*, V_\alpha)$$

$$\Sigma_u \sim \mathcal{IW}_K(S_*, n)$$

- 5. As Q exhibits persistence, we chose a random walk prior for the mean (α^*) .
- 6. Prior variance $V_{\alpha} = \eta I_K$, we set $\eta = 1$, which reflects our ignorance about the actual value of hyperparameters.
- 7. 10,000 draws to obtain our estimates of the reduced form VAR parameters $\theta = (\alpha, \Sigma_u)$.

Identification


8. Draw from the posterior using the algorithm by Arias et al. (2014):

Impact matrix $B_0^{-1} = \text{Chol}(\Sigma_u)$ Long-run matrix $L_{\infty} = (I_K - A_1 - \dots A_p)B_0^{-1}$ Composite matrix $L = [B_0^{-1} \quad L_{\infty}]'$

9. Keep candidate L only if:

Check

10. Check distribution of B_0^{-1} elements:

- ▶ 10,000 B_0^{-1} matrices obtained in 30'.
- All distributions are unimodal.
- In unrestricted elements, means and medians are as expected
- except for expansionary devaluations.

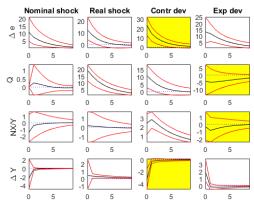
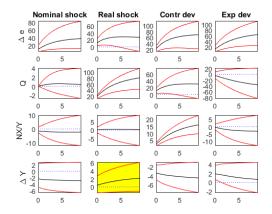
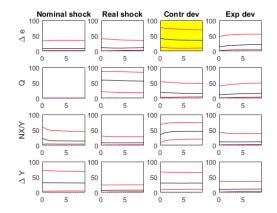
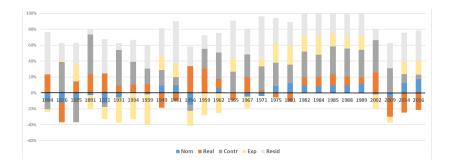



Figure: IRFs: median (—) and 68% CI(—)


- $\Delta e~$ Contractionary devaluations had the strongest effect ightarrow large devaluations.
- ΔY Contractionary devaluations hit strong: 10% dev \rightarrow -1.3 % contraction.
 - Q Expansionary devaluations appreciate the RER.
- NX Expansionary devaluations produce a J-curve, but never get positive.

Accumulated responses

 ΔY Impact of the *real* shock on output variations can be interpreted as a long-term effect on its level.


Variance decomposition

 Δe Contractionary devaluation is the main source of volatility.

However, other shocks affected specific episodes

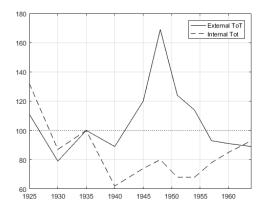
Shock's contribution to each devaluation episode

Although, devaluations were mainly contractionary, other shocks also contributed to some devaluations episodes.

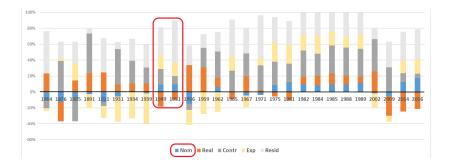
Historical Decomposition

From 1855 to 1940

- Real shocks influence.
- Strong integration with the ROW.
- Devaluations typically occurring after World Crisis: 1873, 1884, 1890, WWI, 1929, 1937.
- Mostly endogenous NER...?

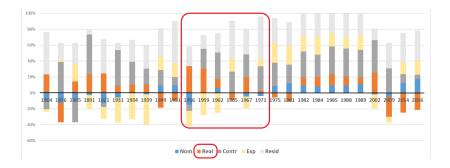

Policy innovations

- From openness to autarky.
- CB in 1935.
- **Export taxes** by Yrigoyen:

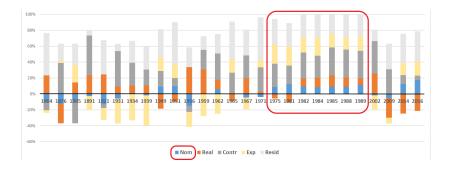

anti-inflationary, anti-redistributive, fiscal income.

Exchange rate controls by Uriburu:

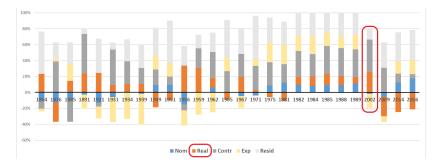
anti-inflationary, anti-redistributive, reduce reserves loss.



Stop and go cycles

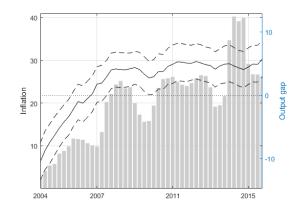

- Nominal shocks influence.
- Foreign currency reserve requirements dropped \rightarrow money expansion.
- Discretionary credit expansion at negative real interest rates.
- ► Wage-price spiral and external constraint.
- Systematic inflation decoupled from international one.

Developmentalism

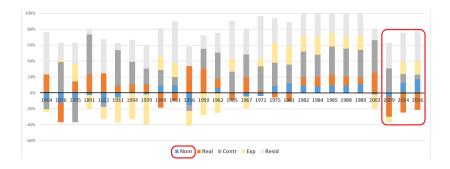

- Real shocks influence.
- Vigorous expansion but with high inflation \rightarrow crawling peg.
- Heterodox stabilization plans: income policy + fiscal consolidation.
- Mostly exogenous NER...?

Hyperdevaluations and hyperinflation

- Nominal shocks influence.
- Failure of both orthodox and unorthodox stabilization plans.
- External shocks: oil shocks, Volcker's disinflation, LATAM debt crisis.
- ▶ In 1983, debt interests and capital raised to 10% of GDP.


From default to boom

- *Convertibility plan*: low inflation + unemployment.
- Low inflation expectations and deeply negative output gap.
- In 2002 highest real devaluation in Argentinean history: real shock influence.
- Balance sheet effect was reduced thanks to debt restructuring.
- Negative income effects were reduced with export taxes.
- Commodity boom since 2004 improved ToT.


Overheating and monetization

Signs of overheating since 2007:

Institutional weakness and debt monetization since 2010.

Back to stagflation

- High inflation caused real appreciation.
- CA deficit in 2010 \rightarrow external constraint \rightarrow ER controls.
- Stop and go since 2011.
- Nominal shocks influence.

Conclusions

- Short and long-run effects of devaluations in developing countries.
- Case study is Argentina: long time series and many devaluations episodes.

BVAR with four structural shocks:

- expansionary devaluation of the traditional type.
- contractionary devaluation à la Díaz Alejandro.
- nominal shock.
- real shock à la Rodrik.

Findings:

- Although devaluations were mostly contractionary ...
- nominal shocks were important when inflation was high,
- real shocks were important when inflation was low,
- expansionary devaluations cannot be recovered from the DGP.
- Brief historical analysis enriched with our results.

Thank you !!!

VAR evidence

Short-run effect, VAR evidence in developing countries:

- Expansionary: Odusola & Akinlo (2001) for Nigeria.
- Contractionary: Kamin & Rogers (2000) for Mexico, Berument & Pasaogullari (2003) for Turkey, Hsing (2004) for Argentina.
- ▶ No effect: Tang (2015) for China.

▶ Back

Short-run effects of devaluations (cont)

Effect over the trade balance:

$$dTB = dY_s^T - dY_d^T$$

Assume inelastic supply of tradables $dY_s^T = 0$. Then, the result in the TB after a devaluation will be the opposite of:

$$dY_d^T = [\underbrace{m_{nc}(Y_s^T - Y_{dc}^T)}_{\text{inc eff cap}} - \underbrace{m_{nw}(Y_{dw}^T)}_{\text{inc eff wor}} - \underbrace{Y^{NT} E_{ne}}_{\text{subs eff}}] de$$
$$= [\underbrace{(s_w - s_c)Y_{dw}^T}_{\text{i}} + \underbrace{(m_{nw} - m_{nc})Y_{dw}^T}_{\text{ii}} - \underbrace{Y^{NT} E_{ne}}_{\text{iii}}] de$$

 $\begin{array}{l} \text{If } |i| > ii - iii, \text{ then } dY_D^T \downarrow \rightarrow dTB \uparrow. \\ \hline \end{array}$

Historical decomposition

Historical decomposition of shock j to variable k for period i:

$$\hat{y}_{kt}^j = \sum_{i=0}^{t-1} \Theta_{kj,i} w_{j,t-i}$$

where $\Theta_i = (J {\bf A}^i J') B_0^{-1}$ and ${\bf A}$ is the companion form of the reduced form VAR.

Use median of \(\Theta_{kj,i}\), to get contribution of each shock to the variations in NER:

$$\delta_{et}^j = \frac{\hat{y}_{et}^j}{\Delta e_t} * 100$$

▶ and the the residual:

$$\varepsilon_{et}^j = \frac{\Delta e_t - \sum_{j=1}^J \hat{y}_{et}^j}{\Delta e_t} * 100$$

Focus on devaluations occurred at years $t = \tau$ and rescale:

$$\frac{\delta^j_{e\tau}}{\sum_{j=1}^J |\delta^j_{e\tau}| + \varepsilon^j_{e\tau}} \qquad ; \qquad \frac{\varepsilon^j_{e\tau}}{\sum_{j=1}^J |\delta^j_{e\tau}| + \varepsilon^j_{e\tau}}$$

- Alexander, S. (1959), 'Effects of a devaluation: a simplified synthesis of elasticities and absorption approaches', *The American Economic Review* **49**(1), 22–44.
- Arias, J., Rubio-Ramírez, J. & Waggoner, D. (2014), 'Inference based on SVARs identified with sign and zero restrictions: theory and applications', *working paper, Federal Reserve Board* (1100).
- Berument, H. & Pasaogullari, M. (2003), 'Effects of the real exchange rate on output and inflation: evidence from Turkey', *The Developing Economies* 56(4), 401–435.
- Brambilla, I., Galiani, S. & Porto, G. (2018), 'Argentine trade policies in the XX century: 60 years of solitude', *Latin American Economic Review* 27(4), 1–30.
- Buera, F., Navarro, G. & Nicolini, J. (2011), 'The Argentine economy after two centuries', Latin American Journal of Economics 48(2), 133–156.
- Buera, F. & Nicolini, J. (2018), 'The monetary and fiscal history of Argentina 1960-2017', Working paper, 2018 Monetary and Fiscal History of Latin America Conference, Becker Friedman Institute for economics at the University of Chicago.
- della Paolera, G. & Taylor, A. (2003), A new economic history of Argentina, Cambridge University Press, New York.
- Di-Tella, G., Zymelmann, M. & Petrecolla, A. (1967), Las etapas del desarrollo económico argentino, Eudeba.
- Díaz-Alejandro, C. (1963), 'A note on the impact of devaluation and the redistributive effect', *Journal of Political Economy* **71**(6), 557–580.

- Díaz-Alejandro, C. (1965), Exchange-rate devaluation in a semi-industrialized country. The experience of Argentina, 1955—1961, The MIT Press.
- Díaz-Alejandro, C. (1970), *Essays on the Economic History of the Argentine Republic*, Yale University.
- Dornbusch, R. & de Pablo, J. (1990), *The Austral Plan*, Developing Country Debt and Economic Performance, NBER.
- Edwards, S. (1986), 'Are devaluations contractionary?', *The Review of Economics and Statistics* **68**(3), 501–508.
- Eichengreen, B. (2008), 'The real exchange rate and economic growth', World Bank PREM Network, Commission on Growth and Development Working Paper (4).
- Fanelli, J. & Frenkel, R. (1990), *Políticas de estabilización e hiperinflación en Argentina*, CEDES.
- Ferrer, A. (1963), 'Devaluación, redistribución de ingresos y el proceso de desarticulación industrial en la Argentina', Desarrollo Económico 2(4), 5–18.
- Ferrer, A. (2004), *La economía argentina. Desde sus orígenes hasta principios del siglo XXI*, Fondo de Cultura Económica.
- Frenkel, R. & Rapetti, M. (2008), 'Five years of competitive and stable real exchange rate in Argentina, 2002—2007', International Review of Applied Economics 22(2), 215–226.
- Frenkel, R. & Rapetti, M. (2012), 'Exchange rate regimes in the major Latin American countries since the 1950s: lessons from history', *Revista de Historia Económica* **30**(1), 157–188.

- Gallo, E. & Cortés-Conde, R. (1972), *La República Conservadora*, Editorial Paidós.
- Gerchunoff, P. & Llach, L. (2009), 'Equality or growth: a 20th century Argentine dilemma', *Revista de Historia Económica* 27(3), 397–426.
- Gerchunoff, P. & Llach, L. (2018), *El ciclo de la ilusíon y el desencanto. Políticas económicas argentinas de 1880 a nuestros días*, Editorial Paidós, Crítica.
- González, G. & Viego, V. (2011), 'The Argentine failure from a comparative perspective: the role of total factor productivity', *Revista de Historia Económica* **29**(3), 301–326.
- Guzman, M., Ocampo, J. & Stiglitz, J. (2017), 'Real exchange rate policies for economic development', *NBER Working Paper Series* (23868).
- Gylfason, T. & Schmid, M. (1983), 'Does devaluation cause stagflation?', *The Canadian Journal of Economics* **16**(4), 641–654.
- Habib, M., Mileva, E. & Stracca, L. (2016), 'The real exchange rate and economic growth: revisiting the case using external instruments', *ECB Working Paper Series* (1921).
- Harberger, A. (1950), 'Currency depreciation, income, and the balance of trade', *Journal of Political Economy* **58**(1), 47–60.
- Hausmann, R., Pritchett, L. & Rodrik, D. (2005), 'Growth accelerations', Journal of Economic Growth 10, 303–329.

- Heymann, D. & Ramos, A. (2012), An eventful evolution. The Argentine growth experience 1950-2010, Beyond the Global Crisis. Edited by L. Punzo, C. Feijo and M. Puchet (Routledge).
- Hsing, Y. (2004), 'Responses of Argentine output to shocks to monetary policy, fiscal policy, and exchange rates: a VAR model', *Applied Econometrics and International Development* **4**(1), 21–36.
- Johnson, H. (1976), 'Elasticity, absorption, Keynesian multiplier, Keynesian policy, and monetary approaches to devaluation theory: A simple geometric exposition', *The American Economic Review* **66**(3), 448–452.
- Kamin, S. & Rogers, J. (2000), 'Output and the real exchange rate in developing countries: an application to Mexico', *Journal of Development Economics* 61(1), 85–109.
- Krugman, P. & Taylor, L. (1978), 'Contractionary effects of devaluation', Journal of International Economics 8, 445–456.
- Laursen, S. & Metzler, L. (1950), 'Flexible exchange rates and the theory of employment', *The Review of Economics and Statistics* **32**(4), 281–299.
- Levy-Yeyati, E., Sturzenegger, F. & Gluzmann, P. (2012), 'Exchange rate undervaluation and economic growth: Díaz Alejandro (1965) revisited', *Economics Letters* 117(3), 666—-672.
- Odusola, A. & Akinlo, A. (2001), 'Output, inflation and exchange rate in developing countries: an application to Nigeria', *The Developing Economies* **39**(2), 199–222.

- Rapaport, M. (2000), Historia economómica, política y social de la Argentina (1880-2000), Ediciones Machi.
- Razmi, A., Rapetti, M. & Skott, P. (2012), 'The real exchange rate and economic development', *Structural Change and Economic Dynamics* 23, 151–169.
- Rodrik, D. (2008), 'The real exchange rate and economic growth', *Brooking Papers on Economic Activity* **2**, 365–412.
- Sanz, M. I. (2009), 'Macroeconomic outcomes and the relative position of Argentina's economy, 1875–2000', *Journal of Latin American Studies* 41(2), 309–346.
- Sidrauski, M. (1968), 'Devaluación, inflación y desempleo', *Económica* 14(1–2), 79–107.
- Tang, B. (2015), 'Real exchange rate and economic growth in China: a cointegrated VAR approach', *China Economic Review* **34**, 293–310.
- Taylor, A. (1992), 'External dependence, demographic burdens and Argentine economic decline after the Belle Époque', *The Journal of Economic History* 52(4), 907–936.