Fiscal Policy in a Business Cycle Incomplete Market Economy¹

Very preliminar

Luis Bettoni Insper Marcelo Santos Insper

Ridge 2018

¹Bettoni gratefully acknowledges financial support from Fapesp Grant 2017/18943-0. Santos gratefully acknowledges financial support from CNPq Proc. 311437/2014-1.

Motivation

Accounting for income risk and distributional concerns, how should gov. set fiscal instruments to provide **insurance** and deal with **inequality**?

- Trade off: Better insurance and redistribution potentially come at the expense of efficiency.
- Key margin: labor supply elasticity.
- Do the business cycle and the labor market dynamic matter?

This paper aims to provide quantitative answers for these questions.

This paper

We focus on two instruments:

Government debt

Progressive tax

This paper

We focus on two instruments:

Government debt

- Induces higher interest rate and lower the cost of self-insurance;
- But it tends to benefit more high income agents

Progressive tax

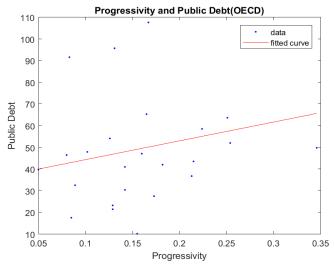
- Reduce consumption volatility;
- Worsen labor market incentives for high productivity agents.

This paper

We focus on two instruments:

Government debt

- Induces higher interest rate and lower the cost of self-insurance;
- But it tends to benefit more high income agents


Progressive tax

- Reduce consumption volatility;
- Worsen labor market incentives for high productivity agents.

• How do they interplay?

Progressive tax and government debt seem to be correlated

What we do

 Develop model economy with infinitely lived heterogeneous agents and incomplete markets:

Ayiagari economy + business cycle + extensive margin of labor supply

Calibrate the model to US economy

What we do

Ayiagari economy + business cycle + extensive margin of labor supply

- We quantitatively evaluate
 - the optimal level of debt and the progressivity in the labor income tax;
 - the mechanism through which these instruments interplay;
 - the role of labor supply elasticity;
 - the importance of the **business cycle**.

What we do

Ayiagari economy + business cycle + extensive margin of labor supply

- We quantitatively evaluate
 - the mechanism through which these instruments interplay;
 - the role of labor supply elasticity;

What we find

Extensive margin matters!

- intensive margin (traditional approach) not able to capture the positive relationship observed in the data;
- extensive margin do, but too steep
- partial time job?

Different policy implications for different labor markets (countries)?

Contribution

Literature

- insurance and redistributional role of public debt
 - Aiyagari and McGrattan (1998), Floden (2001), Dyrda and Pedroni (2018)
- aggregate risk and optimal debt
 - Desbonnet and Kankanamge (2016)
- OLG is important!
 - Peterman and Sager (2017)
- labor supply and business cycle with incomplete markets
 - Chang and Kim (2006); Krusell et al. (2012)

Contribution

Literature

- insurance and redistributional role of public debt
 - Aiyagari and McGrattan (1998), Floden (2001), Dyrda and Pedroni (2018)
- aggregate risk and optimal debt
 - Desbonnet and Kankanamge (2016)
- OLG is important!
 - Peterman and Sager (2017)
- labor supply and business cycle with incomplete markets
 - Chang and Kim (2006); Krusell et al. (2012)
- PD and ITP: insurance and distribution with BC + labor supply

Model economy

Preferences

Individuals maximize the expected discounted lifetime utility:

$$U = \max_{\{c,h\}_{t=0}^{\infty}} \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t u(c,h)\right],$$

with

$$u(c,h) = \frac{c^{1-\sigma}}{1-\sigma} - \rho \frac{h^{1+\frac{1}{\eta}}}{1+\frac{1}{\eta}}$$

Labor supply and earnings

- ullet A worker who supplies h_t hours earns $w_t h_t e^{s_t}$
 - w_t: market wage rate for an efficiency unit of labor
 - s_t : represents the worker's productivity
- s evolves according to: $s_t = \varphi_s s_{t-1} + \varepsilon_t$, with $\varepsilon_t \sim N(0, \sigma_\varepsilon^2)$.
- We consider **two versions** of the model:
 - One in which labor supply is indivisible: h_t can take either zero or \bar{h} .
 - ullet One with only intensive margin: $h_t \in [0,1]$

Production

Cobb-Douglas production function with constant returns to scale,

$$Y_t = z_t K_t^{\alpha} N_t^{1-\alpha},$$

- K: aggregate capital
- N: aggregate efficient units of labor
- z_t : aggregate productivity with $P_z(z',z)$
- Firm's FOCs entails that,

$$w_t = (1 - \alpha)z_t K_t^{\alpha} N_t^{-\alpha},$$

$$r_t = \alpha z_t K_t^{\alpha - 1} N_t^{1 - \alpha} - \delta,$$

where δ is the depreciation rate

Recursive formulation of individuals problem

working

$$\underline{V_e(\omega)} = \max_{c,a' \geq 0} : [U(c,h) + \beta \mathbb{E}_{z'} \mathbb{E}_{s'} \max\{\underline{V_e(\omega')}, V_n(\omega')\}]$$

where $\omega = (a, s; z, \lambda)$ subject to:

$$c + a' = [1 + r(1 - \tau_k)]a + whe^s - T(whe^s) + \epsilon$$

not working

$$V_n(\omega) = \max_{c,a'>0} : [U(c,0) + \beta \mathbb{E}_{z'} \mathbb{E}_{s'} \max\{V_n(\omega'), V_e(\omega')\}]$$

subject to:

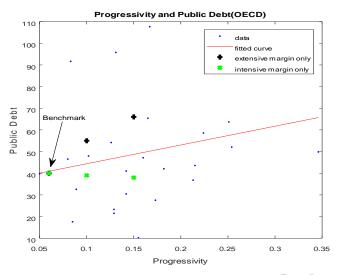
$$c + a' = [1 + r(1 - \tau_k)]a + \epsilon$$

Quantitative analysis

Calibration

Parameter	Value	Source/Target
β	0.98	K/Y = 2.8
σ	2.00	Micro evidence
η	0.50	Micro evidence
ho	43	Average Employment Rate
$arphi_s$	0.948	Chang and Kim (2006)
$\sigma_arepsilon$	0.26	Chang and Kim (2006)
δ	0.05	Average I/Y
α	0.36	NIPA
$ au_k$	0.25	Fuster et. al (2007)
ζ	0.09	Average tax rates
$P_z(z',z)$	-	Chang and Kim (2006)

Planner's Program


The Objective: Utilitarian social welfare function

Planner maximizes 'ex-ante' lifetime utility of an agent born into the equilibrium implied by the optimal policy.

Instruments

- public debt, B;
- labor income taxation: $T(y) = y \varrho y^{1-\zeta}$

Results

Next steps

- Model partial time job;
- match income distribution;

Next steps

- Model partial time job;
- match income distribution;
- compute the optimal fiscal policy;
- consider an OLG economy;
- investigate the role of business cycle.