Large Current Account Deficits and Neglected Vulnerabilities

J. Daniel Aromi

IIEP UBA-Conicet, FCE UCA

December 11, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

What is the information transmitted by Current Account Deficits?

Sachs (1981), Heymann (1994), Milesi-Ferretti & Razin (1996), Blanchard & Giavazzi (2002), Kaminsky et al. (2003), Edwards (2004), Bernanke (2005), Obstfeld & Rogoff (2007), Reinhart & Rogoff (2009).

Assessments require attending numerous relevant aspects:

- Future productive capacities (productivity, resources).
- Trends and fluctuations in international financial markets.
- Evolution of terms of trade.
- Demographic trajectories.
- Institutional environment.

Considering these assessments are challenging tasks...

Are vulnerabilities linked to Large Current Account Deficits correctly anticipated?

Empirical strategy:

Analysis of medium term macroeconomic forecasts following large current account deficits.

Beyond expert forecasts: analysis of asset prices and a sentiment metric.

Sample:

46 advanced and emerging economies. Period: 1990-2017.

On average, Large Current Account Deficits are followed by:

- Surprisingly fast reversals of current account deficit.
- In the surprises on GDP growth.
- Output States of the section of t

Comments:

- Economically significant anomalies. Robust to changes in specification.
- Systematic errors point to neglected vulnerabilities.
- Neglect as a (complementary) mechanism underlying crises.
- Implications for macro-prudential policies. Reassessment of the informativeness of asset prices, expert opinions.

Introduction

2 Data

3 Results

- Current account balance forecasts
- GDP growth forecasts
- Asset returns and sentiment metrics

4 Robustness and extended analyses

6 Concluding remarks

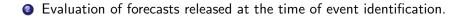
- **Real-time current account balances**: IMF World Economic Outlook database.
- **Macroeconomic forecasts**: WEO's historical forecast database (five-year-ahead GDP growth and current account balances)
- Asset returns: dollar stock market returns (World Bank).
- **Sentiment metric**: inferred from The Wall Street Journal and The Economist. Methodology: Tetlock (2007).

Sample: Period 1990-2017. 46 advanced and emerging countries (aprox. 80% of world GDP).

Descriptive statistics

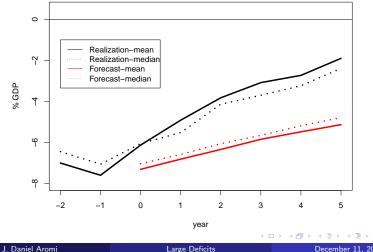
Activity Indicator	Obs.	Mean	St. Dev.	Min	Max
Current Account Balance					
				-	
Realization	1281	0.001	0.055	-0.144	0.309
One-year-ahead forecast	1281	-0.002	-0.050	0.157	0.267
Three-year-ahead forecast	1281	-0.003	0.046	-0.177	0.266
Five-year-ahead forecast	1279	-0.003	0.044	-0.152	0.251
GDP growth					
Realization	1281	0.031	0.036	-0.185	0.263
One-year-ahead forecast	1281	0.036	0.019	-0.053	0.099
Three-year-ahead forecast	1281	0.039	0.017	-0.004	0.107
Five-year-ahead forecast	1281	0.039	0.018	-0.65	0.100
Other variables					
Stock market returns	1046	0.049	0.351	-1.847	1.345
Changes in Sentiment	1035	0.056	1.374	-5.866	5.457

* ロ > * 個 > * 注 > * 注 >


æ

Preliminary event study exercise:

```
An event is identified in year t if:
```


```
ca_{ct-1} < 10th Percentile
```

Where ca_{ct-1} is the latest figure available at the time of forecast release (April of year t).

Preliminary event study exercise

Current account balances conditional on large deficits

Empirical model

Description:

• An event is identified in year t and country c if: $ca_{ct-1} < p_t^x$

Where p_t^x is percentile x computed using information available in year t.

• Forecast errors for k-year-horizon forecast released in year t:

$$fe_{ct}^k = \sum_{j=1}^k ca_{ct+j} - ca_{ct+j}^t$$

• Given parameters k and x, the model is given by:

$$fe_{ct}^{k} = \alpha_{x}^{k} + \beta_{x}^{k} I_{(ca_{ct-1} < p_{t}^{x})} + u_{ct}$$

Comments: Non-overlapping periods, country and time clustered standard errors.

J. Daniel Aromi

December 11, 2018 10 / 25

Current account Forecasts

	$fe_{ct}^{k} = \alpha_{x}^{k} + \beta_{x}^{k}I_{(ca_{ct-1} < p_{t}^{x})} + u_{ct}$					
		[1] $< p_t^{25}$	[2] $< p_t^{10}$	[3] < p_t^5		
k=1	\hat{eta}^k_{x} # obs. < p^{x}_t	0.009** [2.17] 292	0.013*** [3.16] 123	0.015*** [2.63] 64		
k=3	$\hat{eta}^k_{ extsf{x}}$ $\#$ obs. $< oldsymbol{p}^{ extsf{x}}_t$	0.036** [1.97] 96	0.061*** [3.33] 41	0.090*** [3.32] 23		
k=5	\hat{eta}^k_x # obs. $< oldsymbol{p}^x_t$	0.041 [0.99] 48	0.111** [2.67] 22	0.097** [2.05] 12		

∃ → December 11, 2018 11 / 25

æ

A B > 4
 B > 4
 B

First result:

Large current account deficits are followed by surprisingly fast reversals.

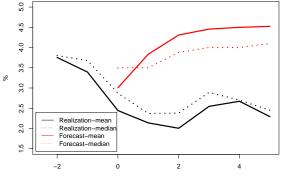
Additional results:

- No evidence of linear association.
- No information from large current account surpluses.
- More distant large current account deficits provide additional information.

Surprisingly fast reversals are not necessarily an indication of negative surprises (Heymann 1994, Arezki et al. 2017). \Rightarrow Need for additional characterizations.

Reduced form evidence:

News arrival following large current account deficits:


- Growth forecast errors.
- Asset returns.
- Sentiment metric (tone of economic press content).

Systematic arrival of negative news is consistent with neglected vulnerabilities.

Evidence on neglected vulnerabilities

Preliminary event study exercise:

GDP growth

year

Growth forecast errors as a surprise metric:

$$gfe_{ct}^{k} = \sum_{j=1}^{k} GDPgr_{ct+j} - GDPgr_{ct+j}^{t}$$
(1)

where $GDPgr_{ct+j}$ is the annual GDP growth rate for year t+j and $GDPgr_{ct+j}^{t}$ is the associated forecast released in year t.

Empirical model:

$$gfe_{ct}^{k} = \alpha_{x}^{k} + \beta_{x}^{k}I_{(ca_{ct-1} < p_{t}^{x})} + u_{ct}$$

$$\tag{2}$$

Under neglected vulnerabilities, $\beta_x^k < 0$.

		$< p_t^{25}$	$< {oldsymbol{ ho}}_t^{10}$	$< p_t^5$
k=1	$\hat{\beta}_x^k$	-0.012*** [-3.47]	-0.013*** [-3.77]	-0.015*** [-3.31]
k=3	$\hat{\beta}_x^k$	-0.041*** [-4.06]	-0.042*** [-3.17]	-0.057** [-2.34]
k=5	$\hat{\beta}_x^k$	-0.045*** [-2.91]	-0.043* [-1.71]	-0.013 [-0.31]

Estimated conditonal bias

Note: For x = 10 and k = 3, estimated expected error is -6.2% (-4.2% conditional bias plus 2% unconditional bias).

Alternative indicators of news arrival:

- Asset returns: stock prices summarize opinions regarding expected profitability of corporations and, plausibly, are correlated with the expected performance of the economy.
- **Changes in sentiment:** media content conjectured to reflect shared views regarding future prospects (Genztkow & Shapiro 2010).

Complementary characterization of incoming information and robustness tests.

$$ret_{ct}^{k} = \alpha_{x}^{k} + \beta_{x}^{k} I_{(ca_{ct-1} < p_{t}^{x})} + u_{ct}$$

		$< p_t^{25}$	$< p_t^{10}$	$< p_{t}^{5}$
k=1	$\hat{\beta}_x^k$	-0.060*** [-2.71]	-0.109*** [-2.74]	-0.131* [-1.74]
k=3	$\hat{\beta}_x^k$	-0.125 [-1.15]	-0.296** [-2.26]	-0.320* [-1.69]
k=5	$\hat{\beta}^k_x$	-0.208 [-0.98]	-0.425*** [-5.01]	-0.268 [-1.33]

Notes: for k = 3 and x = 1, the estimated cumulative mean return is -0.11 and the estimated yearly volatility is 0.4 (vs. 0.28 in the absence of large current accountt defitics).

- ∢ ⊢⊒ →

э

Changes in sentiment

$$sent_{ct}^k = \alpha_x^k + \beta_x^k I_{(ca_{ct-1} < p_t^x)} + u_{ct}$$

		$< p_t^{25}$	$< p_t^{10}$	$< p_t^5$
k=1	$\hat{\beta}_{x}^{k}$	-0.105	-0.350***	-0.404**
		[-1.32]	[-3.18]	[-2.27]
k=3	$\hat{\beta}_{x}^{k}$	-0.468	-0.925***	-0.900**
		[-1.50]	[-5.02]	[-2.38]
k=5	$\hat{\beta}_{x}^{k}$	-0.566	-0.771***	-0.629
		[-1.36]	[-2.65]	[-0.86]

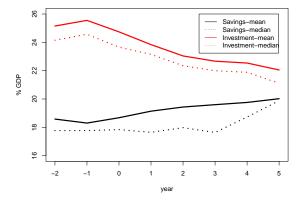
< m

æ

Recent vs. old large current account deficits

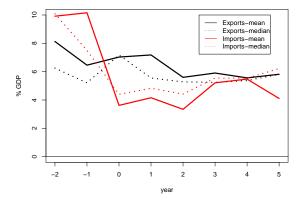
Events identified (under k = 3 and x = 10) are classified as:

- **Recent:** No large deficit observed in t 4 (percentile 20).
- **Old:** Large deficit observed in t 4 (percentile 20).


F	Recent vs. old large current account deficits					
	fe ^k	gfe ^k	ret ^k	sent ^k		
$\hat{\beta}_{x}^{Rec}$	0.019	-0.028***	-0.324***	-0.634**		
	[1.50]	[-3.50]	[-12.01]	[-2.19]		
$\hat{\beta}_{x}^{Old}$	0.090***	-0.062***	-0.249	-1.444***		
	[3.50]	[-3.05]	[-1.10]	[-3.95]		

	fe ^k _{ct}	gfe_{ct}^k	ret_{ct}^k	<i>sent</i> ^k _{ct}
A Py country group				
A. By country group				
\hat{eta}_x^{A}	0.043	-0.065**	-0.345***	-1.02**
	[1.60]	[-3.53]	[-3.73]	[-2.11]
$\hat{\beta}_{x}^{E}$	0.066***	-0.035**	-0.273	-0.896***
	[3.54]	[-2.05]	[-1.55]	[-4.70]
B. By sample period				
$\hat{\beta}_{x}^{ES}$	0.068**	-0.037	-0.277	-0.647**
	[2.51]	[-1.55]	[-1.19]	[2.31]
$\hat{\beta}_{x}^{LS}$	0.053*	-0.049***	-0.312***	-1.505***
	[1.75]	[-3.25]	[-2.72]	[-8.08]

Country groups: Advanced (A) if per capita GDP above 50% of US level (otherwise Emergent).


Sample periods: Early (ES) if year equal to or prior to 2002 (otherwise Late sample). Notes: estimations for k = 3 and x = 10.

Investment and saving rates

э

Yearly growth rates of export and imports

Evidence consistent with neglected vulnerabilities:

- Large current account deficits are reversed at a surprisingly fast pace.
- Large current account are followed by negative surprises (GDP growth, asset prices, sentiment).

Implications:

- Systematic errors in the perception of vulnerabilities as a mechanism explaining economic crisis (vs. moral hazard, bad luck).
- Macro-prudential policy design should consider these biases and reconsider the value of information provided by forecasters/asset prices/media tone.

Extensions:

- Which vulnerabilities are neglected? Uncertain productive capacities? Unstable financial markets? Unexpectedly costly reassignment process?...
- Which are the underlying cognitive mechanisms? (naive projection/disregard for mean reverting properties, reasoning through categories, naive social learning)
- Is there evidence of a learning curve? How fast are these errors corrected?