Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	0000000	00	000000	0

Uneven growth in the extensive margin: explaining the lag of agricultural economies

Guzmán Ourens

Tilburg University

RIDGE Workshop on Macro and Development, Buenos Aires. December, 2018

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	0000000	00	000000	0

TABLE OF CONTENTS

Introduction

Data

A new growth fact

The Model

Testable predictions

In sum

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	000000	00	000000	0

TABLE OF CONTENTS

Introduction

Data

A new growth fact

The Model

Testable predictions

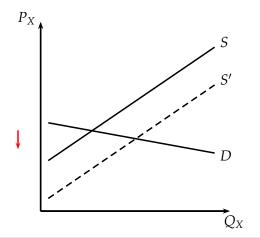
In sum

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
●0000000000	0000	000000	00	000000	0

MOTIVATION

To understand cross-country income differences, it is important to see how much countries produce, but also the prices they obtain.

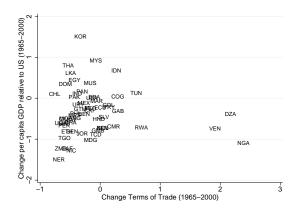
If focus is placed in *intensive margin*: Terms of Trade Effect (TTE):


- ► Fast growing economies tend to experience a deterioration in TT
- ► with TT=price of exports/price of imports

(Acemoglu and Ventura, 2002)

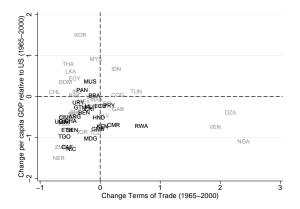
Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
0000000000	0000	000000	00	000000	0

MOTIVATION


Figure: Effect of relative growth on export prices

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	000000	00	000000	0

TERMS OF TRADE DETERIORATE FOR A-PRODUCERS


Figure: Change in real income relative to the US and terms of trade (1965-2000)

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	0000000	00	000000	0

TERMS OF TRADE DETERIORATE FOR A-PRODUCERS

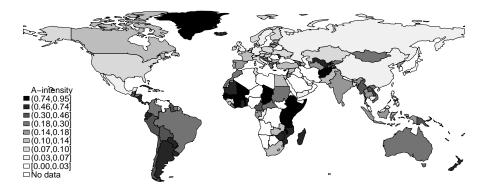
Figure: Change in real income relative to the US and terms of trade (1965-2000)

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	000000	00	000000	0

MOTIVATION

Agricultural economies seem to experience a reversed TTE

- outgrown by others (with otherwise similar characteristics)
- <u>and</u> terms of trade deterioration


What are the driving forces behind these patterns?

 Understanding this is crucial to explain development problems faced by economies with large CA in the A-sector.

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	0000000	00	000000	0

MOTIVATION

Intensity of A-exports by country (2000)

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	000000	00	000000	0

IN A NUTSHELL

In the present work we

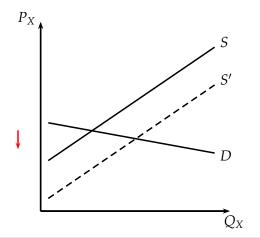
- document a new growth fact: $g_A < g_M$
- ► show it can explain the patterns we see for A-economies

Our mechanism:

- ► focuses on the *extensive margin* of growth
 - abstracts from TFP growth, quality improvements and structural change

Our model sheds light on why diversification is uneven.

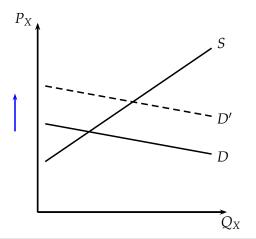
Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
000000000000	0000	0000000	00	000000	0


THE MECHANISM

- $g_A < g_M$
- \Rightarrow diversity-loving consumers shift their expenditure away from A
- \Rightarrow the region specialized in *A* earns a falling share of world value
- \Rightarrow the aggregate value of firms producing *A* falls
- \Rightarrow this translates into falling relative wages
- \Rightarrow terms of trade deteriorate for that region.

Introduction Da	ata A	A new growth fact	The Model	Testable predictions	In sum
000000000000000000000000000000000000000	000 0	000000	00	000000	0

MOTIVATION


Figure: Effect of relative growth on export prices

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
000000000000	0000	000000	00	000000	0

MOTIVATION

Figure: Effect of relative growth on export prices

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	000000	00	000000	0

COMPETING EXPLANATION

A reversed TTE can be accounted for in a model with

- uneven growth (intensive margin) +
- non-homothetic preferences

We contrasts empirically the predictions of both models and show that uneven growth in the extensive margin must be playing a role.

Moreover, our model:

- ► features endogenous income-elasticities of demand
- ► provides an intuitive link between a lagging tech and preferences

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	0000000	00	000000	0

RELATED LITERATURE

My work is related to previous efforts on:

- Sector-specific growth in particular: Caselli (2005), Vollrath (2009), Hidalgo et al (2007), Hidalgo and Hausmann (2011), Rodrik (2016).
- ► Terms of trade effect: Prebisch (1950), Singer (1950), Krugman (1989), Feenstra (1996), Acemoglu and Ventura (2002).
- ▶ **Resource curse**: Sachs and Warner (2001), Auty (2007).
- Structural change: Lewis (1954), Baumol (1967), Matsuyama (1992), Murata (2002), Ngai and Pissarides (2007), Gollin et al (2012).
- ► Engel's law: Matsuyama (1992, 2000), Foellmi and Zweimuller (2008), Boppart (2014).
- **Diversification and welfare**: Broda and Weinstein (2006, 2010).

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	000000	00	000000	0

TABLE OF CONTENTS

Introduction

Data

A new growth fact

The Model

Testable predictions

In sum

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	●000	0000000	00	000000	0
Data					

- World trade flows from:
 - ► Raw UNCOMTRADE: 1962-2014, 5-digit, SITC Rev1.
 - ► Feenstra (2005): 1962-2000, 4-digit, SITC Rev2.
 - ▶ BACI92: 1992-2005, 6-digit, HS0.

▶ PWT, WDI, Sala-i-Martin et al (2004) and Barro and Lee (1993)

We construct three different lists of agricultural goods: Ai with i = 1, 2, 3. List Elast

Then we define $n_{cit} = \#$ of codes within industry i exported by c at t.

Then we compute

$$g_{c,i,t} = \frac{n_{cit+10} - n_{cit}}{n_{cit}}$$

		th fact The Model Testable predictions	ln sum
00000000000 0000 000000 00 00000	000000000000000000000000000000000000000	00 00000	0

WHAT IS A CODE IN EACH CLASSIFICATION?

In SITCRev1:

- ► 6 Manufactured goods classified chiefly by material
 - ► 665 Glassware
 - ► 66511 Commercial containers of glass,etc.
 - ► 66512 Inners for vacuum vessels

In HS0:

- ► 07 Edible vegetables and certain roots and tubers
 - ▶ 0713 Vegetables, leguminous dried, shelled
 - 071332 Beans, small red (Adzuki) dried, shelled
 - ► 071333 Kidney beans and white pea beans dried shelled

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	0000000	00	000000	0

WHAT IS A BIN IN EACH CLASSIFICATION?

Figure: Difference between Kidney beans (left) and Adzuki beans (right)

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	0000000	00	000000	0

DOMESTIC PRODUCTION DATA

Number of producing firms from:

- ► EU: Eurostat.
 - Agricultural training of farm managers dataset, 2005, 2010 and 2013.
 - Manufacturing firm records in Structural business statistics (SBS), 2008-2015.
- US: Census Bureau's Statistics of US Businesses (SUSB), NAICS 6-d, 1998-2015.

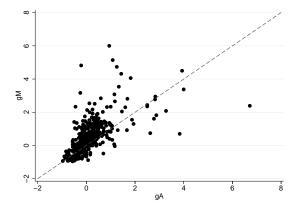
Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	0000000	00	000000	0

TABLE OF CONTENTS

Introduction

Data

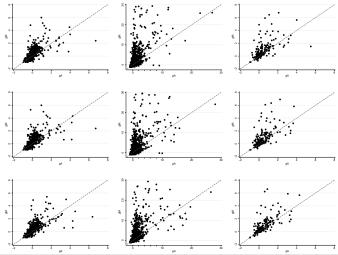
A new growth fact


The Model

Testable predictions

In sum

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
000000000000	0000	●000000	00	000000	0


Figure: 10-year diversification rates in *M* and *A* goods for each country (g_{A1} and g_{M1}), 4-digit data (1962-2000)

model

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	000000	00	000000	0

Figure: g_{Ak} and g_{Mk} with k = 1, 2, 3

Guzmán Ourens

Uneven growth in the extensive margin

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	00●0000	00	000000	0

Table: Testing for differences in 10-year diversification rates, 4-digit data (1962-2000)

	gM1 = gA1	gM2 = gA2	gM3 = gA3
mean(gM)	0.681	0.673	0.653
sd(gM)	5.599	5.478	4.935
mean(gA)	0.210	0.233	0.270
sd(gA)	1.668	1.725	1.997
Obs.	559	559	559
Ha:gM < gA	0.996	0.995	0.998
$Ha: gM \neq gA$	0.008	0.009	0.004
Ha:gM>gA	0.004	0.005	0.002

Introduction 00000000000	Data 0000	A new growth fact	The Model 00	Testable predictions 000000	In sum 0

$$g_A < g_M$$

Table: Testing for differences in 10-year diversification rates, 5-digit data (1962-2000)

	gM1 = gA1	gM2 = gA2	gM3 = gA3
mean(gM)	0.379	0.362	0.368
sd(gM)	1.013	0.981	0.998
mean(gA)	0.162	0.192	0.198
sd(gA)	0.516	0.551	0.559
Obs.	559	559	559
Ha:gM < gA	1.000	1.000	1.000
$Ha: gM \neq gA$	0.000	0.000	0.000
Ha:gM>gA	0.000	0.000	0.000

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	0000€00	00	000000	0

$$g_A < g_M$$

Table: Testing for differences in 13-year diversification rates, 6-digit data (1992-2005)

	gM1 = gA1	gM2 = gA2	gM3 = gA3
mean(gM)	0.766	0.770	0.754
sd(gM)	1.264	1.281	1.218
mean(gA)	0.375	0.393	0.428
sd(gA)	0.806	0.759	0.812
Obs.	219	219	217
Ha:gM < gA	1.000	1.000	1.000
$Ha:gM\neq gA$	0.000	0.000	0.000
Ha:gM>gA	0.000	0.000	0.000

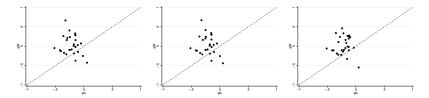

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	00000●0	00	000000	0
$g_A < g_M$					

Table: Testing for differences diversification rates, the rate of each sector being the average diversification of 2-digit lines within that sector, 4-digit data (1962-2000)

	gM1 = gA1	gM2 = gA2	gM3 = gA3
mean(gM)	0.512	0.520	0.515
sd(gM)	1.300	1.449	1.369
mean(gA)	0.264	0.282	0.338
sd(gA)	0.621	0.681	0.884
Obs.	566	566	564
Ha:gM < gA	1.000	1.000	1.000
$Ha:gM \neq gA$	0.000	0.000	0.000
Ha:gM>gA	0.000	0.000	0.000

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	000000●	00	000000	0

Figure: g_{Ak} and g_{Mk} with k = 1, 2, 3, domestic production data for EU countries and the US

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	000000	00	000000	0

TABLE OF CONTENTS

Introduction

Data

A new growth fact

The Model

Testable predictions

In sum

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	0000000	●0	000000	0

Setup

- 2 regions c = N, S
- ► 1 productive factor *L_c* (constant)
- 2 industries i = M, A with multiple (homogeneous) firms that:
 - invest in R&D to develop a new varieties
 - engage in final good production
- ► R&D efforts generate spillovers within the industry
- Trade is perfectly free across regions
- Regions are perfectly specialized:
 - ► N produces M-goods
 - S produces A-goods

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	000000	00	000000	0

GROWTH DYNAMICS

$$g_i = \frac{L_i}{a_i \sigma_i} - \frac{\sigma_i - 1}{\sigma_i} \rho$$

 $g_A < g_M$ if some combination of the following holds

- $\sigma_A > \sigma_M$ Elast
- $L_A < L_M$
- ► $a_A > a_M$ Prox

Assumption

We assume the vector of parameters is such that $g_A < g_M$ *.*

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	000000	00	000000	0

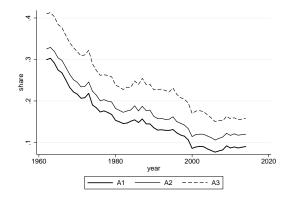
TABLE OF CONTENTS

Introduction

Data

A new growth fact

The Model

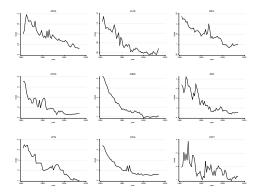

Testable predictions

In sum

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	000000	00	●00000	0

DECLINING SHARE OF NATURAL RESOURCE-BASED PRODUCTS IN INTERNATIONAL TRADE

Figure: Share of A-goods in worldwide trade (1962-2015)



skip

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	0000000	00	○●○○○○	0

DECLINING SHARE OF NATURAL RESOURCE-BASED PRODUCTS IN INTERNATIONAL TRADE

Figure: Share of A1-goods in imports for a sample of countries (1962-2015)

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
000000000000	0000	0000000	00	00000	0

UNEVEN IMPORT DIVERSIFICATION BETWEEN INDUSTRIES

Dependant var:	r1	r2	r3	rE
year	-0.004***	-0.003***	-0.004***	-0.003***
	(0.000)	(0.000)	(0.000)	(0.000)
Lcons	7.330***	7.047***	8.174***	5.289***
	(0.128)	(0.125)	(0.127)	(0.091)
Country-FE	Yes	Yes	Yes	Yes
Observations	5712	5712	5712	5712
R^2	0.357	0.347	0.404	0.363

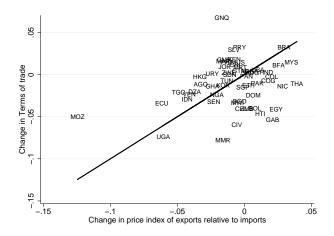
Table: Trends in import diversification

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
000000000000	0000	0000000	00	000●00	0

RELATIVE PRICE INDEX VS TERMS OF TRADE

Comparing the predictions of our model with one of uneven output growth and non-homothetic prefs.

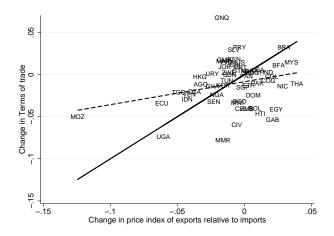
• We can write terms of trade for the South as:


$$\frac{\underline{p}_{A}(t)}{\underline{p}_{M}(t)} = \underbrace{\frac{n_{A}(t)^{1/(\sigma_{A}-1)}}{\underline{n_{M}(t)^{1/(\sigma_{M}-1)}}}}_{\text{g ext. margin}} \underbrace{\frac{P_{A}(t)}{\underline{P}_{M}(t)}}_{\text{P X/M}}$$

- ► Absent changes in the extensive margin, we should have a slope of one in the plane $[\Delta(p_A/p_M), \Delta(P_A/P_M)]$.
- Our model predicts a less steep relationship.

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
000000000000	0000	0000000	00	000000	0

Relative price index vs terms of trade


Figure: Share of A-goods in worldwide trade (1962-2015)

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	0000000	00	00000	0

Relative price index vs terms of trade

Figure: Share of A-goods in worldwide trade (1962-2015)

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	000000	00	000000	0

TABLE OF CONTENTS

Introduction

Data

A new growth fact

The Model

Testable predictions

In sum

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	0000000	00	000000	•

IN SUM

This paper presents:

- evidence documenting: $g_A < g_M$.
- ► model showing this fact can explain divergence of A-economies. Our model:
 - ► provides a new explanation for falling TT for *S*
 - ► links tech. differences and expenditure shifts between sectors

The mechanism could prove useful for other groups of products (or services) where diversification happens at consistently different rates.

Introduction	Data	A new growth fact	The Model	Testable predictions	In sum
00000000000	0000	000000	00	000000	0

TABLE OF CONTENTS

Introduction

Data

A new growth fact

The Model

Testable predictions

In sum

Thanks!

TABLE OF CONTENTS

Introduction

Data

A new growth fact

The Model

Testable predictions

In sum

Table: List of A*i* and E-goods ($\forall i = 1, 2, 3$) as classified in SITCRev2 (4-digits)

Code	Description	A1	A2	A3	Ε
0011-0XXX	Food and live animals chiefly for food	Х	Х	Х	
1110-1XXX	Beverages and tobacco	Х	Х	Х	
2111-2320	Hides, skins and furskins, raw; Oil-seeds and oleagi-	Х	Х	Х	
	nous fruit; Natural rubber Cork and wood; Pulp and				
	waste paper; Textile fibres (other than wool tops and				
	other combed wool) and their wastes (not manufac-				
	tured into yarn or fabric)				
2331-23XX	Synthetic or reclaimed rubber, waste and scrap of un-				Х
	hardened rubber.				
2440-271X	Cork and wood; Pulp and waste paper; Textile fibres	Х	Х	Х	
	(other than wool tops and other combed wool) and				
	their wastes (not manufactured into yarn or fabric);				
	Fertilizers, crude				
2731-28XX	Stone, sand and gravel; Sulphur and unroasted iron				Х
	pyrites; Natural abrasives, N.E.S. (including industrial				
	dymonds); Other crude minerals; Metalliferous ores				
	and metal scrap				
2911-29XX	Crude animal and vegetable materials, N.E.S.	Х	Х	Х	

Table: List of A*i* and E-goods ($\forall i = 1, 2, 3$) as classified in SITCRev2 (4-digits)

Code	Description	A1	A2	A3	Ε
3221-3XXX	Mineral fuels, lubricants and related materials				Х
4111-4XXX	Animal and vegetable oils, fats and waxes	Х	Х	Х	
5111-51XX	Organic Chemicals		Х	Х	
5221-55XX	Inorganic chemicals; Dyeing, tanning and colouring materials; Medicinal and pharmaceutical products; Es- sential oils and perfume materials; Toilet, polishing and cleansing preparations				
5621-56XX 5721-5XXX	Fertilizers, manufactured Explosives and pyrotechnic products; Artificial resins and plastic materials, and cellulose esters and ethers; Chemical materials and products N.E.S.		Х	Х	

Table: List of A*i* and E-goods ($\forall i = 1, 2, 3$) as classified in SITCRev2 (4-digits)

Code	Description	A1	A2	A3	Ε
6112-65XX	Leather, leather manufactures, N.E.S., and dressed			Х	
	furskins; Rubber manufactures, N.E.S.; Cork and wood				
	manufactures (excluding furniture); Paper, paperboard				
	and articles of paper pulp, of paper or of paperboard;				
	Textile yarn, fabrics, made-up articles, N.E.S., and re-				
	lated products				
6611-6XXX	Non-metallic mineral manufactures, N.E.S.; Iron and				Х
	steel; Non-ferrous metals; Manufactures of metals,				
	N.E.S.				
7111-7XXX	Machinery and transport equipment				
8121-8XXX	Miscellaneous manufactured articles				
9110-9XXX	Commodities and transactions not classified elsewhere				
	in the SITC				

Table: Summary stats for the elasticity of substitution within each list of goods

i	Ai				Mi			
	mean	median	sd	Obs.	mean	median	sd	Obs.
1	9.773	3.498	20.614	186	5.837	2.564	13.983	438
2	8.896	3.440	19.316	215	6.019	2.566	14.440	409
3	7.415	3.072	16.439	310	6.611	2.584	16.234	314

Data

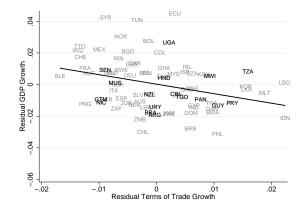

PROXIMITY BY SECTOR

Table: Summary statistics by sector: proximity of goods

i		Ai			Mi	
	mean	sd	Obs.	mean	sd	Obs.
1	0.143	0.047	195	0.179	0.044	423
2	0.147	0.048	222	0.179	0.044	396
3	0.158	0.051	312	0.177	0.043	306
i		Ai			Mi	
	mean	sd	Obs.	mean	sd	Obs.
1	0.159	0.045	195	0.201	0.051	423
2	0.156	0.044	222	0.203	0.051	396
3	0.163	0.046	312	0.208	0.052	306

CONTROLLING FOR SS

Figure: Changes in Terms of trade and GDP growth controlling for SS

