Leaky Capital Controls in the Presence of Savvy Financial Markets

Juan Antonio Montecino Columbia University RIDGE Workshop UBA

December 13, 2017

	tecir	

Capital Controls & Regulatory Evasion

Research Question:

How effective are imperfectly enforceable capital controls?

This Paper:

- Stylized models of inefficient capital inflows and regulatory evasion
- Domestic regulator uses capital controls to correct externalities
- Financial sector strategically evades capital controls

Results:

- Leaky capital controls can still improve welfare
- Controls are more binding when evasion is costly...
- ... but, "first-best" equilibrium is no longer possible
- A "naive planner" could inadvertently reduce welfare

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Capital Controls & Regulatory Evasion

Research Question:

How effective are imperfectly enforceable capital controls?

This Paper:

- Stylized models of inefficient capital inflows and regulatory evasion
- Domestic regulator uses capital controls to correct externalities
- Financial sector strategically evades capital controls

Results:

- Leaky capital controls can still improve welfare
- Controls are more binding when evasion is costly...
-but, "first-best" equilibrium is no longer possible
- A "naive planner" could inadvertently reduce welfare

Capital Controls & Regulatory Evasion

Research Question:

How effective are imperfectly enforceable capital controls?

This Paper:

- Stylized models of inefficient capital inflows and regulatory evasion
- Domestic regulator uses capital controls to correct externalities
- Financial sector strategically evades capital controls

Results:

- Leaky capital controls can still improve welfare
- Controls are more binding when evasion is costly...
- ▶but, "first-best" equilibrium is no longer possible
- A "naive planner" could inadvertently reduce welfare

Background

- Capital controls are hip again
- IMF: should be part of the "policy toolkit" (under some conditions)
- New theoretic literature on welfare rationale:
 - Insulate against volatile capital flows
 - Avoid excessive exchange rate appreciation
 - \blacktriangleright "externalities view" \rightarrow overborrowing in equilibrium
 - e.g. Lorenzoni 2008; Jeanne and Korinek, 2010; Davis and Presno, 2014

Less formal attention on issue of enforcement and strategic evasion

- Two exceptions:
- Bengui and Bianchi, 2014 prudential k-controls with shadow banking
- Schulze, 2000 PE of capital controls

Evasion by "sophisticated" financial markets

- It is often asserted that capital controls may not be effective because they are easily evaded...
 - Edwards (1999): evasion through misinvoicing lowered the efficacy of Chile's controls
 - ▶ Garber (1998): derivatives may make it easier to evade controls
 - Klein (2012): Harder to enforce controls in countries with "experienced" or sophisticated financial markets
- ...But if evasion is costly controls will still be binding
 - "wedge" between domestic and international financial markets
 - Levy-Yeyati et al (2008): controls increase "cross-market premium"
- What determines this cost?
 - enforcement capacity of the regulator?
 - financial sophistication?
 - strategic considerations?

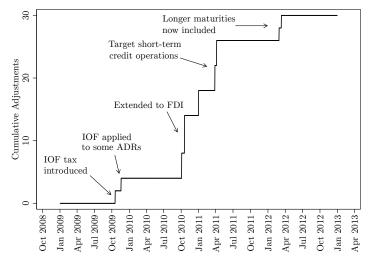
Evasion by "sophisticated" financial markets

- It is often asserted that capital controls may not be effective because they are easily evaded...
 - Edwards (1999): evasion through misinvoicing lowered the efficacy of Chile's controls
 - ▶ Garber (1998): derivatives may make it easier to evade controls
 - Klein (2012): Harder to enforce controls in countries with "experienced" or sophisticated financial markets
- ...But if evasion is costly controls will still be binding
 - "wedge" between domestic and international financial markets
 - Levy-Yeyati et al (2008): controls increase "cross-market premium"
- What determines this cost?
 - enforcement capacity of the regulator?
 - financial sophistication?
 - strategic considerations?

Evasion by "sophisticated" financial markets

- It is often asserted that capital controls may not be effective because they are easily evaded...
 - Edwards (1999): evasion through misinvoicing lowered the efficacy of Chile's controls
 - ▶ Garber (1998): derivatives may make it easier to evade controls
 - Klein (2012): Harder to enforce controls in countries with "experienced" or sophisticated financial markets
- But if evasion is costly controls will still be binding
 - "wedge" between domestic and international financial markets
 - Levy-Yeyati et al (2008): controls increase "cross-market premium"
- What determines this cost?
 - enforcement capacity of the regulator?
 - financial sophistication?
 - strategic considerations?

Timeline of Brazil's IOF tax Cumulative Number of Policy Changes



Montecino

э

< 17 > <

Basic Elements:

- Small Open Economy
- ▶ 2 periods: t=1, t=2
- Endowment economy
- Banks intermediate between world and domestic market
 - Competitive benchmark:

$$R = R^* + \tau$$

- "Dutch disease" externality to motivate k-controls
 - Period 2 endowment is decreasing in aggregate capital inflows

$$Y = \bar{Y} - \varphi D$$

• where $\varphi > 0$ is the size of the externality

Households:

$$\max_{c_1,c_2} u(c_1) + \beta u(c_2) \qquad \text{subject to}$$
$$c_1 = d \ , \ c_2 = y - Rd + T$$

- y : Individual endowment
- ► *R*: Domestic gross interest rate
- ► *T*: Lump-sum transfers

Note: HH take $Y = \overline{Y} - \varphi D$ as given!

3

Laissez-faire equilibrium ($\tau = 0$)

$$u'(D_{lf}) = \beta R^* u' \left[\bar{Y} - (R^* + \varphi) D_{lf} \right]$$

- Features overborrowing!
- Intuition: private rate of return \neq social rate of return

Social Planner equilibrium

$$u'(D_{sp}) = \beta(R^* + \varphi)u'\left[\bar{Y} - (R^* + \varphi)D_{sp}\right]$$

Optimal Capital Controls

$$\tau = \varphi$$

Montecino

- 3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Laissez-faire equilibrium ($\tau = 0$)

$$u'(D_{lf}) = \beta R^* u' \left[\bar{Y} - (R^* + \varphi) D_{lf} \right]$$

- Features overborrowing!
- Intuition: private rate of return \neq social rate of return

Social Planner equilibrium

$$u'(D_{sp}) = \beta(R^* + \varphi)u'\left[\bar{Y} - (R^* + \varphi)D_{sp}\right]$$

Optimal Capital Controls

$$\tau = \varphi$$

Montecino

- 3

・ 同 ト ・ ヨ ト ・ ヨ ト

Laissez-faire equilibrium ($\tau = 0$)

$$u'(D_{lf}) = \beta R^* u' \left[\bar{Y} - (R^* + \varphi) D_{lf} \right]$$

- Features overborrowing!
- Intuition: private rate of return \neq social rate of return

Social Planner equilibrium

$$u'(D_{sp}) = \beta(R^* + \varphi)u'\left[\bar{Y} - (R^* + \varphi)D_{sp}\right]$$

Optimal Capital Controls

$$\tau=\varphi$$

Montecino

- 3

Basic Evasion Model

- ► Game between "banks" and the "regulator"
 - Banks borrow internationally and lend to households
 - Regulator imposes capital controls to achieve SP solution
 - Banks attempt to evade controls to minimize borrowing costs

Limited Institutional capacity

- Developing country
- Ability to enforce regulation is constrained
- Imperfect monitoring of bank borrowing
- Implication: effective tax is endogenous
- Role of financial "sophistication" or "complexity
 - ▶ More "sophisticated" fin. markets are harder to regulate
 - Can think of as regulatory loopholes
 - Other interpretation: fin. complexity implies more instruments through which to evade

Basic Evasion Model

- ► Game between "banks" and the "regulator"
 - Banks borrow internationally and lend to households
 - Regulator imposes capital controls to achieve SP solution
 - Banks attempt to evade controls to minimize borrowing costs
- Limited Institutional capacity
 - Developing country
 - Ability to enforce regulation is constrained
 - Imperfect monitoring of bank borrowing
 - Implication: effective tax is endogenous
- Role of financial "sophistication" or "complexity
 - More "sophisticated" fin. markets are harder to regulate
 - Can think of as regulatory loopholes
 - Other interpretation: fin. complexity implies more instruments through which to evade

Basic Evasion Model

- ► Game between "banks" and the "regulator"
 - Banks borrow internationally and lend to households
 - Regulator imposes capital controls to achieve SP solution
 - Banks attempt to evade controls to minimize borrowing costs
- Limited Institutional capacity
 - Developing country
 - Ability to enforce regulation is constrained
 - Imperfect monitoring of bank borrowing
 - Implication: effective tax is endogenous
- Role of financial "sophistication" or "complexity
 - More "sophisticated" fin. markets are harder to regulate
 - Can think of as regulatory loopholes
 - Other interpretation: fin. complexity implies more instruments through which to evade

Loophole Game

Definition (Loophole Game)

- ▶ **Players:** the "bank" (B) and the "regulator" (R).
- Actions: instrument borrowing and monitoring choices

$$A_i = \{1, 2, \dots, J\}$$
 for $i = \{B, R\}$

Payoffs:

$$\begin{array}{ll} Player \ B: & v(a_B, a_R) = \begin{cases} -\tau & \forall \ a_B = a_R \\ 0 & \forall \ a_B \neq a_R \end{cases} \\ Player \ R: & m(a_B, a_R) = \begin{cases} \tau & \forall \ a_B = a_R \\ 0 & \forall \ a_B \neq a_R \end{cases} \end{array}$$

э

< ロ > < 同 > < 回 > < 回 >

Regulatory Equilibria

Effective Inflow Tax:

$$\tilde{\tau} = \frac{\tau}{J}$$

Fraction of tax "leaks" due to evasion

Definition (Naive Planner)

The Naive Planner does not take bank evasion into account and sets the inflow tax at $\tau_{np}=\varphi$

Definition (Sophisticated Planner)

The Sophisticated Planner is the first-mover and anticipates bank evasion. The SP maximizes social welfare subject to the bank's best response function and sets $\tau_{sp}=J\varphi$

Regulatory Equilibria

Effective Inflow Tax:

$$\tilde{\tau} = \frac{\tau}{J}$$

Fraction of tax "leaks" due to evasion

Definition (Naive Planner)

The Naive Planner does not take bank evasion into account and sets the inflow tax at $\tau_{\textit{np}}=\varphi$

Definition (Sophisticated Planner)

The Sophisticated Planner is the first-mover and anticipates bank evasion. The SP maximizes social welfare subject to the bank's best response function and sets $\tau_{sp} = J\varphi$

Regulatory Equilibria

Effective Inflow Tax:

$$\tilde{\tau} = \frac{\tau}{J}$$

Fraction of tax "leaks" due to evasion

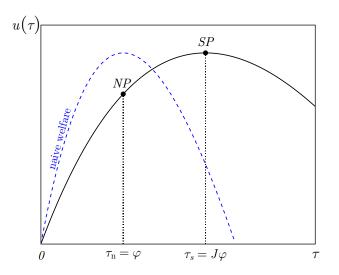
Definition (Naive Planner)

The Naive Planner does not take bank evasion into account and sets the inflow tax at $\tau_{np}=\varphi$

Definition (Sophisticated Planner)

The Sophisticated Planner is the first-mover and anticipates bank evasion. The SP maximizes social welfare subject to the bank's best response function and sets $\tau_{sp} = J\varphi$

Social welfare in the loophole game



12 / 29

э

-

A Model with Perfect Evasion

- ► Enforcement game is played sequentially rather than simultaneously
- ▶ Banks incur evasion costs $\gamma > 0$ per unit of funds intermediated
- Timing:
 - **1** Regulator chooses which loophole to monitor
 - 2 Bank chooses to evade or to comply with k-controls
 - 3 If evade, bank observes regulator's move and chooses loophole

Implication:

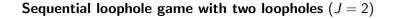
- Sufficiently large τ can "trigger" evasion
- Capital control loses traction beyond threshold

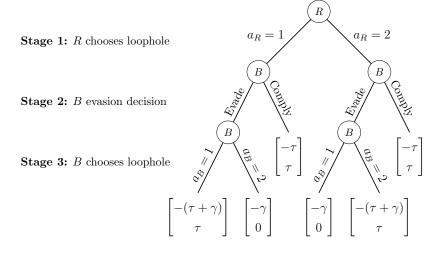
A Model with Perfect Evasion

- Enforcement game is played sequentially rather than simultaneously
- ▶ Banks incur evasion costs $\gamma > 0$ per unit of funds intermediated
- Timing:
 - **1** Regulator chooses which loophole to monitor
 - 2 Bank chooses to evade or to comply with k-controls
 - 3 If evade, bank observes regulator's move and chooses loophole

Implication:

- Sufficiently large τ can "trigger" evasion
- Capital control loses traction beyond threshold





Montecino

December 13, 2017 14 / 29

Equilibrium

Domestic Interest Rate:

$$R = R^* + \min\{\tau, \gamma\}$$

Period 2 constraint:

$$C_2 = \begin{cases} \bar{Y} - (\varphi + R^*) D & \text{if Bank complies } (\tau < \gamma) \\ \bar{Y} - (\varphi + R^* + \gamma) D & \text{if Bank evades } (\tau \ge \gamma) \end{cases}$$

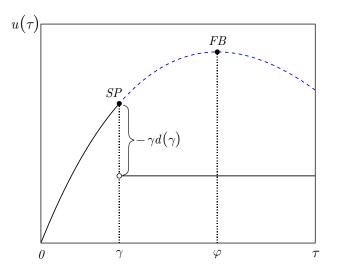
Sophisticated Planner's problem:

$$\max_{\tau} u(D) + \beta u(C_2) \text{ subject to } D = \max\{D(\tau), D(\gamma)\}$$

< 日 > < 同 > < 三 > < 三 >

3

Social welfare in the sequential loophole game



16 / 29

3 K 3

Costly Evasion Setup

Banks' Problem

$$\max_{d,z} \mathbb{E}\{\pi\} = (R - R^* - p(\kappa)\tau)d - \gamma z$$

where

$$\kappa\equiv rac{z}{d}$$
 , $p'(\cdot)<0$, $p''(\cdot)>0$

First-Order Conditions

$$R = R^* + \tau(p(\kappa) - p'(\kappa)\kappa)$$
$$-p'(\kappa)\tau = \gamma$$

which implies...

$$\kappa^* = \kappa(\tau) \quad , \quad \kappa'(\tau) > 0$$

Montecino

3

(人間) くちり くちり

Costly Evasion Setup

Banks' Problem

$$\max_{d,z} \mathbb{E}\{\pi\} = (R - R^* - p(\kappa)\tau)d - \gamma z$$

where

$$\kappa\equiv rac{z}{d}$$
 , $p'(\cdot)<0$, $p''(\cdot)>0$

First-Order Conditions

$$R = R^* + \tau(p(\kappa) - p'(\kappa)\kappa)$$

 $-p'(\kappa)\tau = \gamma$

which implies...

$$\kappa^* = \kappa(\tau)$$
 , $\kappa'(\tau) > 0$

∃ >

< 一型

э

Equilibrium

Decentralized Equilibrium is the fixed point D_{de} of:

$$u'(D_{de}) = \beta R u' \left[\bar{Y} - (\varphi + R^* + \gamma \kappa(\tau)) D_{de} \right]$$

where

subject to

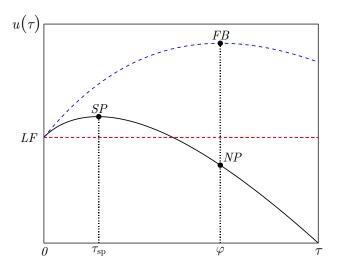
$$R = R^* + \tau(p(\cdot) - p'(\cdot)\kappa)$$

Sophisticated Planner's problem

$$\max_{\tau} u(D) + \beta u \left[\bar{Y} - (\varphi + R^* + \gamma \kappa(\tau)) D \right]$$
$$D = D_{de}(\tau) \quad \text{and} \quad z^* = \kappa(\tau) D_{de}$$

イロト 不得 とうせい かほとう ほ

Social welfare in the costly evasion game



Montecino

December 13, 2017

э

19 / 29

Costly Evasion

Intuition?

- Capital controls can lead to deadweight loss from evasion (γz^*)
- ▶ i.e. Misallocation of goods from consumption to evasion activities
- Pure waste from society's perspective!

Implication:

- Social optimum is not a decentralized equilibrium
- BUT capital controls can still do better than laissez-faire

Costly Evasion

Intuition?

- Capital controls can lead to deadweight loss from evasion (γz^*)
- ▶ i.e. Misallocation of goods from consumption to evasion activities
- Pure waste from society's perspective!

Implication:

- Social optimum is not a decentralized equilibrium
- BUT capital controls can still do better than laissez-faire

A Model with Financial Innovation

In Progress!

Montecino

Leaky Capital Controls

December 13, 2017 21 / 29

- 4 同 6 4 日 6 4 日 6

э

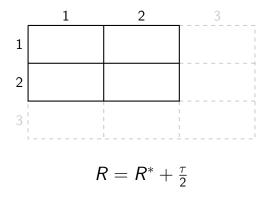
A Model with Financial Innovation

Building blocks

- Overlapping generations that live for two periods
- Imperfect financial sector competition
 - Financial services are a CES composite
 - Each service type is provided by a single monopolist
- Monopolist "innovates" \rightarrow endogenous J
 - Rents incentivize discovery of new avenues for evasion
 - Standard Schumpeterian model
 - Monopolist keeps competitive advantage for one period
- Market is contestable
 - competitive fringe pins down interest rate

A Digression on "Innovation"....

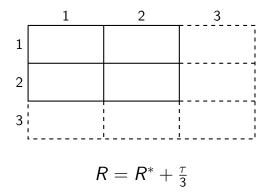
Innovation as increase in the game strategy space



э

A Digression on "Innovation"...

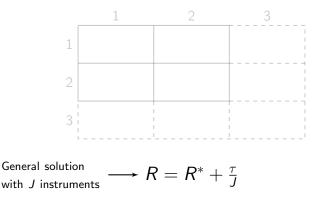
Innovation as increase in the game strategy space



3

A Digression on "Innovation"...

Innovation as increase in the game strategy space



Flow profits

$$\pi_{it} = \left(R - R^* - \frac{\tau}{J_t} \right) D_{it}$$

where

$$J_t = J_{t-1} + 1$$

Limit Price Interest Rate

$$R = R^* + \frac{\tau}{J_{t-1}}$$

Implies...

$$\pi_{it} = \frac{\tau D_{it}}{J_{t-1}(J_{t-1}+1)}$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Flow profits

$$\pi_{it} = \left(R - R^* - \frac{\tau}{J_t} \right) D_{it}$$

where

$$J_t = J_{t-1} + 1$$

Limit Price Interest Rate

$$R = R^* + \frac{\tau}{J_{t-1}}$$

Implies...

$$\pi_{it} = \frac{\tau D_{it}}{J_{t-1}(J_{t-1}+1)}$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Flow profits

$$\pi_{it} = \left(R - R^* - \frac{\tau}{J_t} \right) D_{it}$$

where

$$J_t = J_{t-1} + 1$$

Limit Price Interest Rate

$$R = R^* + \frac{\tau}{J_{t-1}}$$

Implies...

$$\pi_{it} = \frac{\tau D_{it}}{J_{t-1}(J_{t-1}+1)}$$

3

→ Ξ → → Ξ →

< 17 ▶

Innovation Decision

$$\max_{z} \mathbb{E}\{\Pi_{it}\} = \Psi(z)\pi_{it} - z$$

where

$$\Psi(z) \in [0,1] \text{ and } \Psi'(z) > 0 \;, \;\; \Psi''(z) < 0$$

Solution

$$z^* = z(\tau)$$

where

$$\frac{\partial z}{\partial \tau} = -\frac{\Psi'(z^*)\pi'(\tau)}{\Psi''(z^*)\pi(\tau)} > 0$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Innovation Decision

$$\max_{z} \mathbb{E}\{\Pi_{it}\} = \Psi(z)\pi_{it} - z$$

where

$$\Psi(z) \in [0,1] \text{ and } \Psi'(z) > 0 \;, \;\; \Psi''(z) < 0$$

Solution

$$z^* = z(\tau)$$

where

$$\frac{\partial z}{\partial \tau} = -\frac{\Psi'(z^*)\pi'(\tau)}{\Psi''(z^*)\pi(\tau)} > 0$$

3

- 4 同 6 4 日 6 4 日 6

Innovation

Expected Evolution of Loopholes

$$\mathbb{E}\{J_t\} = \Psi(z^*)\pi(\tau) + J_{t-1}$$

- Loopholes J_t will increase as long as $\tau > 0$
- In the limit $t \to \infty$, $J_t \to \infty$
- Capital controls become completely ineffective over time

$$\lim_{t\to\infty}\frac{\tau}{J_t}=0$$

Implies policymakers need to continuously close loopholes!

Thank You :)

Montecino

Leaky Capital Controls

December 13, 2017 29 / 29

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >